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ABSTRACT

All clinical simulation designers face the problem of
identifying the plausible diagnostic and management
options to include in their simulation models. This study
explores the number ofplausible diagnoses that existfor a
given case, and how many subjects must work up a case
before all plausible diagnoses are identified. Data derive
from 144 residents andfaculty physicians from 3 medical
centers, each of whom worked 9 diagnostically
challenging cases selectedfrom a set of 36. Each subject
generated up to 6 diagnostic hypothesesfor each case, and
each hypothesis was rated for plausibility by a clinician
panel. Of the 2091 diagnoses generated, 399 (19.1%/), an
average of 1I per case, were considered plausible by study
criteria. The distribution ofplausibility ratings wasfound
to be statistically case dependent. Averaged across cases,
the final plausible diagnosis was generated by the 28th
clinician (sd = 8) who worked the case. The results
illustrate the richness and diversity of human cognition
and the challenges these pose for creation of realistic
simulations in biomedical domains.

INTRODUCTION

A growing literature attests to the importance of simulation
technology in the pre-professional and continuing
education of clinicians across the health professions [1-3].
Entire conferences are now being devoted to this topic [4].
As documented in this literature, well-designed, high-
fidelity simulations provide limitless opportunities for
practice of cognitive tasks and procedural skills, allowing
learners to make mistakes on machines instead of human
patients or animals. Simulations also provide specific
feedback to guide learning, and can be used for
competence assessment to promote patient safety and
reduce medical errors.

Since it is not possible to capture the full extent of reality
in any simulator, and especially in clinical medicine, every
simulation designer faces a fundamental problem of what
to include and what to exclude from the models and user
options that power a simulation. Error in the direction of

providing too much can make simulations almost
impossibly expensive to produce and slow to execute, with
no material benefit to the educational or assessment
process. Error in the direction of providing too little can
make simulations unrealistic, by overly limiting learners'
options to act.

More specifically, the simulation model must make
available to learners all reasonable diagnostic and
management options, explicitly including and
"understanding" every action that the learner can take,
both correct and incorrect, in the course of working
through a case problem. Failing to open all plausible
options to the learner can result in cueing that destroys
much of the realism of the simulation. For example, a
student working on a simulated case that is really a case of
pneumonia may want to order studies appropriate to a
workup for lung cancer. If the simulation model does not
include the option of ordering tests specific to a cancer
workup, it is cueing the learner to the fact that the problem
is not cancer. This interjects unrealism that can destroy the
educational value of a simulation. (This is a different issue
from intentionally cueing a novice student to the fact that
the problem is not cancer, in order to help them as they
work through the simulation.)

These dilemmas for simulation designers exist whether the
interface of the simulation emphasizes forced choices from
picklists or open-ended text entry by the user/learner. In
the former instance, the simulation model must include all
plausible options in the picklists. Too few options
engenders cueing; too many may be unacceptably
cumbersome. In the latter instance of open-ended text
entry, the simulation must parse and recognize all
reasonable entries by the learner and allow the learner's
requested action to be taken. These dilemmas are not new;
they reach back to the earliest work in this area [5-7].

So how, then, does a simulation designer determine what is
plausible? How does the designer include enough options
to make the simulation realistic without going to the time

AMIA 2002 Annual Symposium Proceedings 275



and expense of including extraneous material that will
make the simulation overly cumbersome and ornate? One
approach is a prospective empirical study, as part of the
simulation design process, where subjects are stepped
through the case and, at various points, asked to "think out
loud" regarding their current diagnostic assessment or the
actions they might take at that point. This approach
would, over a series of subjects, generate a range of
hypotheses and actions, eventually identifying those that
are appropriate to include in the finished simulation
design. But how many subjects are required in such a
study before one can be confident that everything plausible
has arisen? Can simulation designers rely on their own
judgments of what is plausible to include as options for the
learners?

This study offers some initial empirical evidence on the
bounds of plausibility in the domain of diagnosis in
internal medicine, which was the domain of some of the
earliest work on simulation in medical education [7]. We
explore the following specific research questions:

1. For challenging diagnostic problems in internal
medicine, how many plausible diagnoses exist? What is
the mean number of plausible diagnoses per case and do
these distributions vary across cases?

2. Anticipating formal studies to identify all the plausible
options for simulated cases, how many subjects are needed
to identify the full extent of plausibility? How does this
result change if simulation designers are satisfied to
identify less than the full set ofplausible hypotheses?

METHODS

To address these questions, we employed a large dataset
originally collected for a study of the impact of decision
support systems on the accuracy of clinicians' diagnoses
[8]. We developed for the original study detailed written
synopses of 36 diagnostically challenging cases from
patient records at the University of Illinois at Chicago, the
University of Michigan, and the University of North
Carolina. Each institution contributed twelve cases with
firmnly established final diagnoses. The 2-4 page case
synopses were designed to provide a complete portrayal of
the patient. As such, they contained comprehensive
historical, examination and diagnostic test information.
The case descriptions did not, however, contain results of
"definitive" or pathognomic tests that would have made
the correct diagnosis obvious to most or all clinicians. We
divided the 36 cases into four sets of 9 cases each. The
sets were balanced for pathophysiologic process, degree of
difficulty, and institution of origin.

We then recruited to the study 216 subjects from these
same institutions: 72 fourth year medical students, 72

second- and third-year internal medicine residents, and 72
general internists with faculty appointments and at least
two years of post-residency experience. (They averaged
11 years of experience.) Recruitment was balanced so that
each institution contributed 24 subjects at each level of
experience. Each subject was randomly assigned to work
the 9 cases comprising one of the 4 case sets, so each case
was completed by 18 students, 18 residents and 18 faculty
physicians. Each subject worked through each of the
assigned cases first without, and then with, assistance from
an assigned computer-based decision support system. On
each pass through each case, subjects generated a
differential diagnosis consisting of up to 6 ordered
diagnostic hypotheses.

The data addressing the research questions in this study
emanated from the first pass through each case by the
subjects, so the results in this study are a reflection of
human cognition unaided by computer-based or other
decision support. Also, because we discovered that the
medical students were largely overmatched by these cases-
-they diagnosed only 26% of cases correctly and often
were guessing rather than providing knowledge-directed
hypotheses--we based the analyses reported here on the
performance of the resident and faculty subjects.
Eliminating the medical students from this analysis
reduced the total number of subjects in the study to 144,
and reduced from 54 to 36 the number of subjects who
worked each case.

As part of the generation of the complete dataset for the
study, a panel of three experienced internists (co-authors
PLF, PSH, TMM) rated the plausibility of each diagnosis
reported in the hypothesis lists. Plausibility was judged in
the context of each case. Plausibility of each hypothesis
for each case, was rated by each judge on a 1-7 scale, with
a score of"7" given to the correct hypothesis, for the case,
and "1" to a completely improbable hypothesis. We
averaged the ratings of the panelists to compute a
plausibility score for each unique diagnostic hypothesis
within each case. The averaging generated non-integer
plausibility scores for some hypotheses. Specific
diagnostic hypotheses that recurred across multiple cases
typically received different plausibility scores in the
context of these different cases. Interjudge reliability of
the plausibility ratings of these hypotheses averaged .85
across the cases [9].

Analyses addressing both research questions required us to
explore thresholds for considering diagnoses to be
"plausible". Based on the semantics of the 7-point scale
used for the ratings, consensus of the research team was
that any hypothesis with a plausibility score less than 4
should not be considered "plausible", and that any
hypothesis with a score of 5 or higher should be
considered "plausible". We elected, for this initial
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exploration, to employ an intermediate threshold of
plausibility, considering as plausible within each case all
diagnostic hypotheses with a score greater than 4.

To address the first research question regarding the
number and distribution of plausible hypotheses per case,
we created a 36 x 7 contingency table with a row for each
case and a column for each plausibility level, rounding
each score to the corresponding integer value. The table
cells contained the counts of hypotheses at each
plausibility level for each case. We computed the mean
and distributional features, for each case and across cases,
of the numbers of plausible diagnoses (those with
plausibility score greater than 4). We then tested
statistically the case-dependence of these distributions
using chi-square analysis of the contingency table.

Addressing the second research question, how many
subjects are required to identify the full set of plausible
hypotheses, necessitated that we make our findings
statistically independent of any particular ordering of
subjects in the dataset. To this end, we generated for each
case 100 random orderings of subjects. For each ordering
we computed the serial number of the subject who
generated the last of the set of plausible hypotheses for that
case; i.e. the subject for that ordering after whom no more
plausible hypotheses were seen. The average of these
serial numbers across the orderings created an unbiased
estimate of the mean number of subjects required to
generate all plausible hypotheses, as identified by the full
group of subjects, for that case. If, for example, the
plausible hypotheses tended to recur in most subjects' lists,
we would expect that many fewer than the full group of
subjects would be required to identify the full set. We then
repeated the analysis to determine the serial numbers of the
subjects who generated the next-to-last plausible diagnosis,
for each case, as well as the serial numbers of the subjects
who generated the last plausible diagnosis but two.

RESULTS

Research Question 1: The faculty and resident subjects
collectively generated 2091 diagnostic hypotheses over all
cases, or 58 unique diagnoses on average per case. Of
these, 399 (19.1%) were plausible by our criterion of
having a score greater than 4. The average number of
plausible diagnoses per case was 11 with a standard
deviation of 5, a maximum 22 and a minimum of 3. By
chi-square test, the overall distribution of plausibility
scores was statistically case-dependent (chi-square =
661.4, df= 210, p < .0001).

this histogram corresponds to two serial numbers, so for
example, the bar centered on a value of "21" includes
serial numbers 21 and 22. With specific reference to
Figure 1, the height of the bar centered on 21 is 150. This
result can be interpreted as follows: In 150 subject
orderings (of the 3600 orderings generated and analyzed),
the final plausible diagnosis was generated by the 21st or
22nd subject (of the 36 subjects who worked each case).

The average serial number of the subject generating the
final plausible diagnosis was 27.6, with a standard
deviation across cases of 8.1. The curved line running
through the figure represents the normal distribution with
the mean and variance estimated from the data.
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Figure 1. Distribution of the Serial Numbers of the
Subjects Generating the Final Plausible Diagnosis, with
100 Orderings for Each of 36 Cases.
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Research Question 2: Figure 1 displays the distribution
of serial numbers of subjects generating the last of the
plausible hypotheses, for 100 random orderings within
each case and with results for all cases pooled. Each bar of
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Figure 2. Distribution of the Serial Numbers of the
Subjects Generating the Next-to-Last Plausible
Diagnosis, with 100 Orderings for Each of 36 Cases.
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Figure 2 (on the previous page) displays the analogous
result exploring the serial number of the subject who
generated the next-to-last plausible hypothesis. Again
using the bar centered on 21 as an example, the height of
the bar in Figure 2 is 270. So for 270 orderings (of 3600),
the next-to-last plausible diagnosis was generated by the
21st or 22nd subject (of 36). The average serial number of
the subject generating the next-to-last plausible diagnosis
was 22.0, with a standard deviation across cases of 8.8.
Although not shown in figures, the average serial number
of the subject generating the "last-but-two" of the plausible
diagnoses is 18.1 with a standard deviation across cases of
8.4.

DISCUSSION

The richness of human cognition is evident in these
findings. Physicians faced with challenging diagnostic
problems generated a broad array of diagnostic
hypotheses. About 19% of the diagnoses they generated,
or 11 per case, were considered plausible in the clinical
context of the case, by our criterion. Individuals appeared
to think divergently about these cases. Had they
approached these cases in a cognitively homogeneous way,
all plausible diagnoses would have been identified after
relatively few subjects had completed each case. Instead,
it was necessary for 28 physicians to complete the average
case before all plausible hypotheses identified by the full
group of 36 were generated. This does not mean, of
course, that our subjects were uninformed or poorly-
trained in their professions. It more likely illustrates that
the educated mind is a fertile source of creative ideas.
Faced with a challenging problem such as the diagnosis of
a complex medical case, trained physicians asked to
independently generate ideas will collectively generate a
large number ofthem.

These results come perhaps as sobering news for clinical
simulation designers hoping to capture, in relatively
parsimonious lists, everything that users of their
simulations consider plausible--and thus avoid "cueing"
and related challenges to the fidelity of a simulation.
Users of simulations will likely think as creatively, in
working through clinical cases, as did the subjects in our
study. Our findings suggest that as many as 25-30 subjects
will be required to identify the full array of plausible ideas
and options to include in a "high fidelity" simulated case,
if these ideas and options are to be generated via a
prospective study. It follows from these findings that
simulation designers and case authors should not rely
solely on their own judgments in determining what options
should be included in a simulation.

allowed to generate a longer list, it is possible that fewer
subjects would be required to identify all plausible
hypotheses, but this is by no means certain. For example,
80% of our subjects, when given the option of identifying
up to six hypotheses, in fact identified fewer than six. The
collective span of the group's thinking appears to greatly
exceed the span of any individual.

Because the perfect is sometimes the enemy of the good,
we examined the implications of being satisfied to identify
all but one or two of the plausible hypotheses, in lieu of the
full set. The numbers of subjects required to meet these
relaxed criteria did diminish substantially. If simulation
designers are willing to accept the risk of failing to identify
some plausible options within a case, they could conduct
prospective studies with fewer subjects than otherwise
would be required. Along similar lines, we chose an
intermediate threshold for considering a specific diagnosis
to be plausible. Adopting a more inclusive threshold
would, in general, increase both the number of plausible
diagnoses and the number of subjects required to identify
all or most of them. Adopting a more exclusive threshold
would have the opposing effect.

It is evident from these findings that all phenomena we
studied are highly case dependent. For example, the
number of plausible hypotheses per case varied from 3 to
22 over the 36 cases included in our study. This carries a
clear implication to simulation designers that not all
disease domains can be approached in the same way.
Identification of plausible options may be possible with
relatively few subjects for some domains, and will require
many more subjects for others.

Our decision to eliminate from the analysis the diagnostic
hypotheses of medical students carries some implications.
As stated earlier, the medical students diagnosed very few
of these cases correctly and generated relatively few
plausible hypotheses. Including them would have inflated
estimates of the numbers of subjects required to generate
the full set of plausible hypotheses. However, if
simulations are designed for students, perhaps some
implausible hypotheses generated consistently by students
should be included in picklists and other components of
the simulation. Exploration of this question goes beyond
the scope of the present study, but it remains an issue for
simulation design.

While the design of clinical simulations will always be part
science and part art, the results of this study may be
helpful in enhancing the scientific basis of this complex
and challenging process.

One feature of our study that may modify this
recommendation was the limitation of each subject to
generating six hypotheses per case. If each subject were
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